Land Use and Transportation Scenario Analysis and Microsimulation

14th TRB National Planning Applications Conference Columbus, OH

SMART TRANSPORTATION ANALYSIS

Project Need:

How to quantify the benefits of Smart Transportation and Land Use Investments?

Need a transferable process that will produce reasonable results statewide in a streamlined manner.

Goal: Evaluating Multiple, Detailed Land Use and Infrastructure Scenarios

BACKGROUND: PENINSULA MODEL OVERVIEW

Model Maintenance (Network, TAZ, & Count Update Utilities) **Feature Models Core Model** Air Quality Conformity EZPass Toll/Mode Split Model (5-Step Travel Demand Model Equations) "Build/No Build" Model Statewide Evacuation Model **Single Network Processor** Seasonal Tourist Model **Junction Model** GIS TAZ Land Use Layer TIS Model (Extra P's & A's) **Subarea Model** Micro-Model (GIS Network, (GIS Network, **Outputs** Fratar Trip Table)

"Tax Parcel TAZ")

(Reports, GIS Files, Loaded Networks, etc)

BACKGROUND: DELDOT'S PENINSULA MODEL

Two Levels of Resolution

Standard Resolution:

- 13,491 Links
- 2108 TAZs

Enhanced Resolution:

- 177,211 Links
- 19,640 TAZs

Can be applied using windowing process in GIS for a hybrid setup

LUTSAM (Land Use and Transportation Scenario Analysis and Microsimulation)

WHAT IS LUTSAM?

LUTSAM is a modeling tool and process resulting from a collaboration between the Delaware Department of Transportation (DelDOT) and the State Smart Transportation Initiative (SSTI) at the University of Wisconsin – Madison.

LUTSAM tests land use alternatives along with multi-modal investments, by integrating GIS, land use, travel demand and microsimulation.

SSTI - MODELING PROCESS FLOW

LUTSAM USER INTERFACE

REGIONAL MODEL FLOW

MTDM Demographic Data Processor

- •Peninsula Model TAZ Demographic Data
- •Parcel (Micro TAZ) Database from LUTSAM

- •Define Macro TAZs to be Micro-modeled
- •Run Demographic Data Processor
- •Randomly Assigns Household Type to each New Household
- •Re-allocates remaining people, vehicles, and workers to parent TAZ households

- •Refined Trip Generation
- •Refined Trip
 Distribution
- •Refined Mode Split
- •Refined Traffic Assignment

- •Master Input Network
- •Link and Node Database from LUTSAM
- •Run Network Processor
- •Combines Micro Model and Peninsula Model Links and Nodes into Single Model Network

•Extract AM/PM peak hour subnetwork and trip tables for microsimulation

MTDM Network Processor

HOUSEHOLD SYNTHESIZER

New Household Parcels with Parent TAZ ID from GIS GUI

TAZ(s) with Total Household Number and Average Person, Vehicle, Worker and Income

Cross-classification Data Derived from PUMS Data and Delaware Annual Survey Number of Households for Each of 208 combinations of workers, people, vehicles, and income for each parent TAZ

- Randomly Assign
 Household Type to
 Each New Household
 within the Micro modeled TAZ based
 upon demographics of
 parent TAZ
- Rellocate remaining people, workers, and vehicles to remaining households within remainder of parent TAZ

LUTSAM - Test Scenario

SCENARIO LOCATIONS

- 1. Suburban Traditional
- 2. Urban

SCENARIO DESCRIPTIONS

Suburban Traditional

- 200 single/multi family homes with a big box store
- Traditional design
- Four entrances to adjacent roadways
- Poor connections and pedestrian facilities

Urban

- 200 single/multi family homes with one big box store
- Compact, dense design
- Two entrances to adjacent roadways
- Well connected and completely walkable/bikeable community

SUBURBAN TRADITIONAL

URBAN GRID

Walk/Bike Trips (Daily)

VMT & VMT/TRIP

VHT & DELAY

Regional Model TAZ = 2,136

Census Block TAZ = 22,500

Tax-Parcel TAZ = 7,700

Results

- Significant Increase in Bike/Walk Trips
- 10% Decrease in Auto Trips to Shopping
- 10% Less VMT / Unit
- Less Travel on Arterials & Key Intersections
- 11% Less Emissions / Unit

SMYRNA SAMPLE VIDEO

Conclusions

- Useful for a variety of applications
 - Regional studies
 - Small area studies
 - Corridor studies
 - Transit evaluations
 - Multimodal Studies
- Allows Standard MPO and Statewide Travel Demand Models to operate at the tax parcel level, taking advantage of the benefits of both regional and parcel based models.

Contacts

Scott Thompson-Graves

724-779-7940 sthompson-graves@wrallp.com

Rafey Subhani

410-246-3434 rsubhani@wrallp.com

Mike DuRoss

302-760-2110 michael.duross@state.de.us

Eric Sundquist

608-265-6155 erics@cows.org

Bill Holloway

608-265-5899 holloway@ssti.us

