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Uncertainty in Transportation
Demand and Flow Models

Postulates
» There is uncertainty in predictions/forecasts: “Models are off”
* |t is better to recognize than ignore the uncertainty

Practice

« Transportation demand/flow models generally produce point
estimates

Propose and validate an approach to
“add” uncertainty to model point estimates



Recognizing Differences between
Models and the “Truth”

* Empirical-based studies
» Measures of difference (e.g., RMSE) to compare models
* Do not provide measure for prediction uncertainty

* Theoretical/Numerical (Monte Carlo)—based studies

* Provide measures for prediction uncertainty based on distributions
of inputs or parameters

* Do not account for model/assumption uncertainty

* This approach

» Use differences between past model-based and observed values to
determine distribution of true value, conditional on model output



Developing Uncertainty Distributions
Difference between Model Values and Observations: A

MORPC Network
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* Ferdous et al. (2011) Comparison of Four Step Versus Tour-Based Models
In Predicting Travel Behavior Before and After Transportation System Changes



Determining Difference (A), Bias (b),
and Error (¢) Distributions
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1041 Segments in Ferdous et al.



Determining Difference (A), Bias (b),
and Error (¢) Distributions

Differences Between
quels andl Observations
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Determining Bias Distribution

Year 1 :
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Prediction/Forecast on Link i: F;(T;|M;)
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Validation Study

* Use subset of model/observation data to estimate bias and error
distribution

» Use estimated bias and error distributions with remaining model
output to produce uncertainty in model predictions/forecasts

» Use observations for remaining data ("known outcomes of
prediction/forecast”) with modeled uncertainty to determine
empirical distributions of probabilities of observations

« Compare empirical distributions to theoretical distributions
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Validation Logic: Probabillistic Forecast
of Observation T°"s on Link |

In 2005
Model link I: M; = 58,071
Observation link iz 7% ; = 62,025
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In 2005
Model link J: M; = 30,998
Observation link j: 79 ; = 35,860
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In 2005
Model link k: M,, = 59,050
Observation link k: 7°bs , = 54,025
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Cumulative of F(Tebs)
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Monte Carlo Logic:
Well-calibrated uncertainty should
produce points around 45°line

Metrics of discrepancy w/ 45° line
« AAD: |Avg. Dif. (45°, pts.)|
 MD: |[Max. Dif. (45°, pts.)|

* Area (459, pts.)

Larger metric values imply

1]

F;(T°) poorer empirical distributions
=0.62
0.1 0.2 03 04 05 0B 07 08 083 F1(Tobs)
Fye(T%) Fi(T°)

=0.12 —=0.60 14



Empirical Applications

* Link volumes from traffic assignment
* Mid-Ohio Regional Planning Commission model outputs and observations
e Values from Ferdous et al. (2011): Tour-based model



Traffic Assignment Validation
Using Ferdous et al. MORPC Data

Aqggregated Calibration
* Model/Observation years: Jdrey

1990, 2000, 2005

 Calibrate using two years to
predict third year: All (3)
combinations
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AAD: 0.058
MD :0.130
Area: 0.057

 Calibrate one bias and one error
distribution using all segments:
“Aggregated Calibration”

e Pool results :
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Cumulative of F(Tobs)

Traffic Assignment Validation
Aggregated Calibration for Segmented Predictions
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Traffic Assignment Validation
Aggregated vs. Segmented (Bias and Error) Calibration

Aggregated Calibration Segmented Calibrations
I by Functional Class
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Calibrating Bias and Error Distributions for Each Functional Class Improves Results
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Empirical Applications

* Bus passenger OD (B2A) flows from estimations based on boarding
and alighting data
* The Ohio State University Campus Transit Lab OD flow observations
(http://transitlab.osu.edu/campus-transit-lab)
* Boarding and alighting observations for six academic terms
* Model output using Iterative Proportional Fitting (IPF) method



Bus OD Flow
Aggregated vs. Segmented (Bias and Error) Calibration

_—

Aggregated Calibration

o o 0O
~{ 0 (]
T T

o
(ay]
T

= ¢
T

AAD: 0.050
MD :0.146
Area: 0.052

o
(3]
T

Cumulative of F(Tebs)

o
—

07 08 089 1

1] 01 02 03

0.4 05 0.6
F(Tobsi)

Cumulative of F(Tebs)

o o o o o
—_ . (43} E=N oy}
T T T

Q
- -

Segmented Calibrations for High
. and Low Volume OD Cells #
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MD :0.142
Area: 0.045

| 1 1 | | 1 1 | 1 ]
0 0.1 02 03 04 05 06 D07 08 09 1

F (Tobsi)

Calibrating Bias and Error Distributions for High/Low Volume Cells Improves Results
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Conclusions

Preliminary validation studies indicate the approach is capturing
uncertainty appropriately

Additional studies needed to refine approach and produce more robust
validation studies (“spin-off’ research investigations also envisioned)

Request for agency model validation data
mccord.2@osu.edu, mishalani.1@osu.edu, bicici.1@osu.edu
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